\mathbf{R}^{-} , and causing complete reaction of these to produce two R's and a photon. The total moles of photons produced in any time increment are used to calculate ZLUM.

These calculations are continued for each time increment until the next reversal occurs.

The program allows calculation of concentration profiles and intensity-time and current-time curves. A complete listing of the FORTRAN program and an explanation of it is available.⁸

Electrical Conductance of Bolaform Electrolytes in Viscous Solvents. Manganese(II) *m*-Benzenedisulfonate and Manganese(II) 4,4'-Biphenyldisulfonate in Water-Ethylene Glycol Mixtures at 25°1

P. Hemmes² and S. Petrucci

Contribution from the Department of Chemistry, Polytechnic Institute of Brooklyn, Brooklyn, New York 11201. Received August 30, 1968

Abstract: The electrical conductances of the Mn(II) salts of m-benzenedisulfonate (BDS²⁻) and of 4,4'-biphenyldisulfonate (BPDS²⁻) have been measured in mixtures of water-ethylene glycol at 25° up to 0.56 and 0.40 mole fraction of glycol, respectively. The data are interpreted by means of the Fuoss-Onsager 1959 equation for conductance. MnBDS is partially associated in the mixtures, while MnBPDS is substantially unassociated. The a_{Λ} , a_{I} , and a_{K} (for the associated electrolyte) show a fair consistency. It is shown that the BPDS²⁻ ion frictional coefficient can be calculated theoretically using the hydrodynamic radius of the benzenesulfonate ion and the Perrin rigid elipsoid model.

B olaform ions³ are ions whose total charge is split into discrete charges separated by uncharged areas. This is also the structural feature of both synthetic and biological polyelectrolytes. In fact, the bolaform ion may resemble a segment of the chain of a polyion.

The study of the hydrodynamic and kinetic properties of these ions and their interactions and association with the counterions may link the properties of simple and polyelectrolytes. Indeed the behavior of some bolaform ions can still be interpreted by the theories of simple electrolytes.

The study of this class of electrolytes was initiated by Fuoss and his school at Yale University.³ Rice⁴ reexamined the conductance of some diquaternary ammonium salts³ and demonstrated the validity of the present conductance theories⁵ in the analysis of association and hydrodynamic parameters.

Among the bolaform ions the benzenedisulfonate anions and their derivatives are particularly important. Because of the rigidity of the inert frame interposed between the charges, their properties can be sucessfully interpreted in terms of simple geometrical models.

Atkinson and his associates⁶ studied the conductance of these electrolytes rather extensively in water as well as in mixtures of water with organic liquids in order to lower the dielectric constant of the medium. In this laboratory it was decided to extend this research to media of higher viscosity, namely water-ethylene glycol mixtures. It was of interest to study the hydrodynamic and thermodynamic properties of these ions and compare them with the simpler ion SO_4^{2-} in these solvents. In particular it was of interest to study the effect of the progressive separation of the charges (going from the SO_4^{2-} to the BPDS²⁻ ion) on the hydrodynamic and association properties of these ions. As counterion Mn(II) was chosen in view of a previous study of MnSO₄ in water–glycol at $25^{\circ.7}$

Experimental Part

Mn(m)BDS was prepared as described in the literature.⁶ It was crystallized twice from conductance water and dried at 105° to the form MnBDS-3.5H₂O as checked by cation exchange and titration of the acid. MnBPDS was prepared by a similar preparation

⁽¹⁾ This work is part of the thesis of Paul Hemmes in partial fulfillment of the requirements of the Ph.D. degree.

⁽²⁾ National Science Foundation Kirk Fellow of the Polytechnic Institute of Brooklyn.

⁽³⁾ R. M. Fuoss and D. Edelson, J. Am. Chem. Soc., 73, 269 (1951).
(4) S. A. Rice and M. Nagasawa, "Polyelectrolyte Solutions," Academic Press, New York, N. Y., 1961.
(5) R. M. Fuoss and F. Accascina "Electrolytic Conductance," Interscience Publishers, New York, N. Y., 1959.

^{(6) (}a) G. Atkinson, M. Yokoi, and C. J. Hallada, J. Am. Chem. Soc., (6) (a) G. Atkinson, M. Fokol, and C. J. Hallada, J. Am. Chem. Soc.,
83, 1570 (1961); (b) C. J. Hallada and G. Atkinson, *ibid.*, 83, 3759 (1961); (c) G. Atkinson and C. J. Hallada, *ibid.*, 84, 721 (1962); (d) G. Atkinson and S. Petrucci, J. Phys. Chem., 67, 337 (1963); (e) *ibid.*, 67, 1880 (1963); (f) G. Atkinson and S. Petrucci, J. Am. Chem. Soc.,
86, 7 (1964); (g) B. R. Staples and G. Atkinson, J. Phys. Chem., 71, 667 (1967).

⁽⁷⁾ S. Petrucci, P. Hemmes, and M. Battistini, J. Am. Chem. Soc., 89, 5552 (1967).

as reported for CuBPDS;⁸ namely, K₂BPDS prepurified from K₂-SO₄ impurities was converted to the acid by cation-exchange technique. The acid was then allowed to react with MnCO₃ to prepare the MnBPDS salt. MnBPDS was crystallized from hot water and dried to anhydrous form at 105°. Ethylene glycol (Fisher reagent) was distilled under vacuum as described before.⁷ Equipment and procedure were the same as for the case of MnSO₄ in water-glycol.⁷

Results

The results for the concentrations C (moles/liter) and corresponding equivalent conductances Λ (ohm⁻¹ cm² equiv⁻¹) for water and the various mixtures investigated are reported in Table I. At least one decimal figure in excess is given (on C and Λ) than is significant in terms of the precision so that others may reanalyze the data and avoid rounding-off errors.

Table I. Conductance Results for MnBDS and MnBPDS in Water–Glycol Mixtures at 25°

MnBDS					
$C \times 10^4$	Λ	$C imes 10^4$	Λ	$C imes 10^4$	Λ
Xalveol	= 0.00	Xalveol	= 0.20	Xalveel	= 0.30
3 5822	103,498	1.5153	33.812	4 0255	21 049
5 7819	101 170	3 5156	32 549	7 3358	19 930
8 3193	99.071	11 319	29 659	11 245	19 063
11 907	96 754	16 687	28 570	16 309	18 294
15 593	94 969	21 532	27 829	25 015	17 380
17 273	94 225	27 782	27 100	20.010	17,500
23 565	91 881	2			
26 013	91 186				
20.015	21,100				
$X_{ m glycol}$	= 0.50	X_{glycol} =	= 0.555		
2.4870	11.842	1.5817	10.515		
6.9045	10.594	2.8513	10.098		
9.8821	10.124	5.1496	9.491		
14.075	9.647	9.4059	8.751		
21.332	9.084	15.224	8.169		
29.237	8.662				
		MnBF	DS		
$C imes 10^4$	Λ	$C \times 10^4$	Λ		
			0.00		<u> </u>
Xglycol	= 0.00	X _{glycol}	= 0.20		
1.1100					
5 ((0))	97.596	5.314/	29.009		
5.6684	97.596	5.8892	29.009		
5.6684 8.1681	97.596 92.079 90.382	5.8892 8.7613	29.009 28.540 27.730		
5.6684 8.1681 11.247	97.596 92.079 90.382 88.843	5.8892 8.7613 12.140	29.009 28.540 27.730 26.995		
5.6684 8.1681 11.247 14.067	97.596 92.079 90.382 88.843 87.719	5.8892 8.7613 12.140 17.036	29.809 28.540 27.730 26.995 26.208		
5.6684 8.1681 11.247 14.067 16.755	97.596 92.079 90.382 88.843 87.719 86.722	5.8892 8.7613 12.140 17.036 20.415	29.809 28.540 27.730 26.995 26.208 25.750		
5.6684 8.1681 11.247 14.067 16.755 23.399	97.596 92.079 90.382 88.843 87.719 86.722 84.967	5.8892 8.7613 12.140 17.036 20.415	29.809 28.540 27.730 26.995 26.208 25.750		
5.6684 8.1681 11.247 14.067 16.755 23.399	97.596 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30	5.8892 8.7613 12.140 17.036 20.415	29.809 28.540 27.730 26.995 26.208 25.750 $= 0.40$		
5.6684 8.1681 11.247 14.067 16.755 23.399 Xglycol 2.8212	97.596 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30 19.696	5.8892 8.7613 12.140 17.036 20.415 Xglycol 4.1004	$29.809 \\ 28.540 \\ 27.730 \\ 26.995 \\ 26.208 \\ 25.750 \\ = 0.40 \\ 14.173 $		
5.6684 8.1681 11.247 14.067 16.755 23.399 X _{glycol} 2.8212 4.8226	97.596 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30 19.696 18.984	5.3147 5.8892 8.7613 12.140 17.036 20.415 Xglycol 4.1004 5.9003	$29.609 \\ 28.540 \\ 27.730 \\ 26.995 \\ 26.208 \\ 25.750 \\ = 0.40 \\ 14.173 \\ 13.674 \\ $		
5.6684 8.1681 11.247 14.067 16.755 23.399 X _{alveol} 2.8212 4.8226 6.8252	97.996 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30 19.696 18.984 18.468	5.3147 5.8892 8.7613 12.140 17.036 20.415 X _{glycol} 4 5.9003 10.115	$29.609 \\ 28.540 \\ 27.730 \\ 26.995 \\ 26.208 \\ 25.750 \\ = 0.40 \\ 14.173 \\ 13.674 \\ 12.898 \\ $		
$\begin{array}{c} 5.6684\\ 8.1681\\ 11.247\\ 14.067\\ 16.755\\ 23.399\\ \hline X_{glycol}\\ 2.8212\\ 4.8226\\ 6.8252\\ 12.350\\ \end{array}$	97. 596 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30 19.696 18.984 18.468 17.489	5.3147 5.8892 8.7613 12.140 17.036 20.415 X _{glycol} 4.1004 5.9003 10.115 14.596	29.609 28.540 27.730 26.995 26.208 25.750 = 0.40 14.173 13.674 12.898 12.446		
5.6684 8.1681 11.247 14.067 16.755 23.399 X _{glycol} 2.8212 4.8226 6.8252 12.350 17.237	97. 596 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30 19.696 18.984 18.468 17.489 16.865	5.3147 5.8892 8.7613 12.140 17.036 20.415 X _{glycol} 4.1004 5.9003 10.115 14.596 20.950	$29.609 \\ 28.540 \\ 27.730 \\ 26.995 \\ 26.208 \\ 25.750 \\ = 0.40 \\ 14.173 \\ 13.674 \\ 12.898 \\ 12.446 \\ 11.941 \\ \end{bmatrix}$		
$\begin{array}{c} 5.6684\\ 8.1681\\ 11.247\\ 14.067\\ 16.755\\ 23.399\\ \hline X_{glycol}\\ 2.8212\\ 4.8226\\ 6.8252\\ 12.350\\ 17.237\\ 21.410\\ \end{array}$	97.596 92.079 90.382 88.843 87.719 86.722 84.967 = 0.30 19.696 18.984 18.468 17.489 16.865 16.493	$\begin{array}{c} 3.314'\\ 5.8892\\ 8.7613\\ 12.140\\ 17.036\\ 20.415\\ \hline \\ 4.1004\\ 5.9003\\ 10.115\\ 14.596\\ 20.950\\ 27.425\\ \end{array}$	$29.609 \\ 28.540 \\ 27.730 \\ 26.995 \\ 26.208 \\ 25.750 \\ = 0.40 \\ 14.173 \\ 13.674 \\ 12.898 \\ 12.446 \\ 11.941 \\ 11.572 \\ \end{bmatrix}$		

Calculations

The analysis of the data has been made by the 1959 Fuoss-Onsager relations⁵ expressing the isothermal dependence of the equivalent conductance with concentration of electrolyte

$$\Lambda = \Lambda_0 - S\sqrt{c} + Ec \log c + Jc \qquad (1)$$

$$\Lambda = \Lambda_0 - S\sqrt{c\gamma} + Ec\gamma \log c\gamma + Jc\gamma - K_A c\gamma f^2 \Lambda \quad (2)$$

(8) M. Yokoi and G. Atkinson, J. Am. Chem. Soc., 83, 4367 (1961).

Equation 1 holds for unassociated electrolytes, while eq 2 is valid for partially associated electrolytes. Both equations should be valid up to xa = 0.20.5 Symbols in the above have been extensively illustrated for 2:2 electrolytes previously.^{5,7}

The analysis was performed by a computer program. MnBDS shows a small but definite association while MnBPDS is substantially unassociated in all the range of glycol composition investigated. Table II reports the results of this analysis in terms of the parameters Λ_0 , J, a_J , K_A together with the dielectric constant D, and viscosities η of the corresponding solvent mixtures. The fitting of the computer can be judged from Figures 1 and 2 when the ($\Lambda_{calcd} - \Lambda_{Onsager}$)'s are plotted vs. c. $\Lambda_{Onsager}$ is the quantity $\Lambda_0 - S\sqrt{c}$ or $\Lambda_0 - S\sqrt{c\gamma}$, respectively. Λ_{calcd} is the calculated value of Λ by eq 1 or 2 and the parameters of Table II. The experimental points indicated on Figures 1 and 2 are obtained as ($\Lambda_{expt1} - \Lambda_{Onsager}$). The quantities $|\overline{\Lambda_{calcd}} - \overline{\Lambda_{expt1}}|$ in Tables I and II are the average deviations between the calculated and experimental conductances.

Discussion

For the MnBDS in view of the presence of association the Fuoss equation⁸

$$K_{\rm A} = K_0 e^b \tag{3}$$

has been considered in order to correlate the association constant of the various mixtures. In the above K_0 is the geometrical term⁸

$$K_0 = 4\pi N a^3 / 3000 \tag{4}$$

and b is the Bjerrum parameter⁹

$$b = |Z_+ Z_-|e^2/aDkT \tag{5}$$

where e is the electronic charge and Z_+ and Z_- are the ionic valencies; other symbols have their usual meaning.^{5,7}

In Figure 3 a plot of log K_A vs. 1/D gives a straight line passing within experimental errors through both the closed and open points. These latter in turn correspond to the association data for MnBDS in waterdioxane.³ From the slope of the graph assuming eq 3, one can evaluate a minimum approach parameter $a_K =$ 4.7×10^{-8} cm in fair accord with the average $a_J =$ $5.5 \, 10^{-8}$ cm from Table II.

It is noteworthy that the association of $MnSO_4 > MnBDS > MnBPDS$, therefore decreasing with the size of the anion. Simple electrostatic considerations would suggest that indeed this has to be the case. However, it has been pointed out⁷ that eq 3 shows a minimum by increasing *a* because of the competition of the K_0 and exp (*b*) factors with increasing the parameter *a*.

The physical origin of the above lies in the nature of the geometrical factor K_0 that expresses the excluded volume from the solution by the ions or in other words the increase of probability of association by increase of the diameter of the ions. Exp(b) on the contrary decreases with *a* because the potential energy $|Z_+Z_-|e^2|$ aD (in the *b* parameter) decreases with *a*.

(9) N. Bjerrum, Kgl. Danske Videnskab. Selskab, 7, No. 9 (1926).

Journal of the American Chemical Society | 91:2 | January 15, 1969

Table II. Results of Conductance Analysis for MnBDS and MnBPDS in Water-Glycol at 25°

 X_{glycol}	10²η, poise	D	Λ_0 , ohm ⁻¹ cm ² equiv ⁻¹	J	10ª <i>a</i> , cm	$K_{\rm A}, M^{-1}$	$\Lambda_0\eta$	$ \Lambda_{ m calcd} - \Lambda_{ m exptl} $
				MnBDS		_		
0.00	0.895	78.54	112.80	8700	5.5	(5)ª	1.009	0.079
0.20	2.80	65.6	36.33	4960	5.7	16	1.017	0.038
0.30	4.15	60.7	24.25	4100	5.7	26	1.006	0.044
0.50	7.25	53.1	13.57	3453	5.5	77	0.984	0.040
0.555	8.25	51.1	11.80 6	3390	5.1	110	0.974	0.022
				MnBPDS				
0.00	0.895	78.54	102.40	8920	6.7		0.916	0.087
0.20	2.80	65 .6	32.99	4 440	5.8		0.924	0.024
0.30	4.15	60.7	22.04	3650	5.5		0.915	0.018
0.40	5.56	57.0	16.47	3250	5.4		0.916	0.045

^a The value of K_A in water has been estimated from extrapolation of the log K_A -(1/D) plot (Figure 3).

The minimum of K_A is easily found by setting the derivative of (3) with respect to *a* equal to zero; the root is

$$a_{\min} = |Z_1 Z_2| e^2 / 3DkT \tag{6}$$

In water for a 2:2 electrolyte $a_{\min} = 9.51$ Å. By lowering the dielectric constant a_{\min} increases. Therefore the a_J 's for MnSO₄, MnBDS, and also MnBPDS are inferior to a_{\min} and in the region where the electrostatic term still predominates over the entropic one, K_0 , in accord with eq 3.

Figure 1. Plot of $(\Lambda_{calcd} - \Lambda_{Onsager})$ for MnBDS in water-glycol mixtures at 25°.

In Table III the Stokes hydrodynamic radius of Mn^{2+} and SO_4^{2-} and BDS^{2-} are reported in H_2O -glycol at 25°. These values were calculated from the formula

$$R_{\pm} = F Z_{\pm} e / 6\pi \lambda_{\pm}^{0} \eta \tag{7}$$

where F is the Faraday constant; Z_+ (and Z_-) are the ionic valencies; λ_{+^0} (and λ_{-^0}) are the limiting conduc-

Figure 2. Plot of $(\Lambda_{calcd} - \Lambda_{Onsager})$ for MnBPDS in water-glycol mixtures at 25°.

tivities. Notice that the R_+ 's are in excellent numerical accord when calculated from $MnSO_4$, MnBDS, and MnBPDS as one could predict from the almost perfect

Table III. Calculated Stokes Hydrodynamic Parameters for Mn^{2+} , SO_4^{2-} , BDS^{2-} , and $BPDS^{2-}$ in Water–Glycol Mixtures at Infinite Dilution⁴

Solvent compn X_{glycol}	$\frac{1}{R_+}$ Mr	$SO_4 - R$	-Mn	BDS— R_	-MnB R_+	PDS— R_
0.00	3.42	2.29	3.41	3.09	3.41	3.76
0.10	3.38	2.26				
0.20			3.38	3.07	3.38	3.73
0.30	3.51	2.35	3.42	3.11	3.42	3.79
0.40					3.41	3.76
0.50	3.32	2.22	3.50	3.17		
0.555		•••	3.53	3.21	• • •	•••

^a The values of R_{\pm} are in ångströms.

Figure 3. Plot of log $K_A vs. 1/D$ for MnBDS in water-glycol mixtures at 25°.

validity of the Walden rule (Table II) with solvent composition.

The numerical value of R_+ may also suggest the speculation that a hexaquo $Mn(H_2O)_6^{2+}$ is the kinetic entity even in H₂O-glycol mixtures. This speculation of specific preferential solvation by water is corroborated by ultrasonic results of $MnSO_4$ in H₂O-glycol mixtures.¹⁰ Notice also that R_- increases from an average 2.28×10^{-8} cm for SO_4^{2-} to 3.13×10^{-8} cm for BDS²⁻ and to 3.76×10^{-8} cm for BPDS²⁻ as one would have intuitively predicted. (In the above calculations the transport number of Mn^{2+} at infinite dilution has been assumed constant with glycol compositions and equal to $n_+^0 = 0.401$ for MnSO₄, 0.476 for MnBDS, and 0.525 for MnBPDS.)

From the above it can be concluded that MnBDS still behaves according to a model assuming ions as spheres which can be described in their hydrodynamic and thermodynamic properties through the Fuoss-Onsager theories.⁵

MnBPDS can also be described as two spheres according to the Fuoss-Onsager theories.⁵ There are two points of interest, however. First one should notice the surprising resemblance of the a_J values going from MnBDS to MnBPDS (Table II) and of the a_{K} values of MnBDS compared to MnSO₄.⁷ If this has any physical significance one would be tempted to speculate that Mn(II) interacts mainly with one of the two SO₃⁻ groups instead of occupying an equilibrium position in between the charges. However, it has been pointed out that the converse ought to be true on the basis of electrostatic calculations.^{6g} The second point of interest is that the value of $R_{-} = 3.76 \times 10^{-8}$ cm does not correspond to any likely molecular model for the BPDS²⁻. Because of the structure of this ion, a model different from a sphere may seem a logical alternate choice. A treatment of the hydrodynamic properties of the BPDS²⁻ ion at infinite dilution in water-glycol mixtures has been tried by assuming the Perrin rigid ellipsoid model¹¹ for the ion with the two charges occupying the foci of the ellipsoid.

Figure 4. Plot of the frictional coefficient ξ vs. the viscosity η for BPDS²⁻ in water-glycol mixtures at 25°.

The frictional coefficient ξ_{Perrin} is then

$$\xi_{\text{Perrin}} \cong 6\pi\eta b'/\ln\left(2b'/a'\right) \tag{8}$$

where b' and a' are the semiaxes of the ellipse. ξ can also be calculated independently from the conductance data

$$\xi_{\text{exptl}} = \frac{1}{w_i} = \frac{F|z_i|e}{300\lambda_i^0}$$
(9)

where w_i is the mobility of the ion *i* of equivalent conductance λ_i^0 at infinite dilution and charge z_i .

A plot of $\xi_{\text{exptl}} vs. \eta$ should be linear according to the Perrin theory¹¹ with slope approximately equal to $6\pi b'/\ln (2b'/a')$.

In Figure 4 this plot is shown. The points reported are calculated from eq 9. The solid line has been calculated in the following way.⁸ From the limiting conductance in water of KBS and NaBS where BS⁻ is the benezenesulfonate ion, $\lambda_0^- = 34.93$. Assuming the Stokes law for this ion

$$\frac{1}{w_{\rm BS}} = \xi_{\rm BS} = \frac{96,500 |Z_{\rm BS}| e}{300 \lambda_{\rm BS}} = 6 \pi \eta a_{\rm BS} \qquad (10)$$

resulting in $a_{\rm BS} = 2.61 \times 10^{-8}$ cm as the hydrodynamic radius. Then taking for BPDS²⁻ $a_{\rm BS} = a'$ and b' = 2a', the slope of eq 8 can be calculated as 7.099 $\times 10^{-7}$, and the solid line is constructed as reported in Figure 4. b' = 5.22 Å is in fair accord with half of the BPDS²⁻ ion length calculated from molecular models. The results of this calculation are reported in Table IV. The

Table IV. Calculated and Experimental Frictional Coefficients for $BPDS^{2-}$ in Water–Glycol at 25°

Xglycol	$\eta imes 10^2$, poises	$\xi_{Perrin} imes 10^8$	$\xi_{exptl} imes 10^8$
0.00	0.895	0.635	0.637
0.20	2.80	1.988	1.969
0.30	4.15	2.946	2.960
0.40	5.56	3.947	3.943

accord between theoretical and experimental values is surprisingly good considering the naivety of the model and the numerical approximations introduced.

⁽¹⁰⁾ P. Hemmes, F. Fittipaldi, and S. Petrucci, submitted for publication.

⁽¹¹⁾ F. Perrín, J. Phys. Radium, 7, 1 (1936).